高中物理力學(xué)大題?首先,每本書以及書和手之間的壓力都是一樣的,都是F=300N 那么,就有兩個(gè)約束條件:一個(gè)是手和書的摩擦力足夠大,把所有的書看做一個(gè)整體n1mg=2μ1F 另外,要注意是兩條邊接觸,所以摩擦力是有兩個(gè) n1=48 二是書和書的摩擦力足夠大,要保證都不掉,那么,高中物理力學(xué)大題?一起來了解一下吧。
這道題出的確實(shí)有點(diǎn)奇怪 主要還是考察你對(duì)向心力知識(shí)的應(yīng)用吧 不要在意結(jié)果 過程會(huì)了就好 拉力應(yīng)該是隨著w的變化而變化的
這一題應(yīng)該是分情況討論
第一種,向心力為摩擦力 此時(shí)必須保證繩子不伸直,所以距離需要小于等于r,而且要求其摩擦力小于等于最大靜摩擦力,這點(diǎn)你應(yīng)該會(huì)算。滿足這兩個(gè)條件就可以了
第二種,向心力為摩擦力和拉力的合理。若繩子上存在拉力,則必須被拉直。那么r就固定不變了。剩下的就是根據(jù)w計(jì)算向心力,然后在減去摩擦力得出拉力。
我覺得這題的關(guān)鍵在于,當(dāng)繩子拉直后,再增加w,那么多出的向心力到底是拉力提供還是摩擦力提供。你可以想象一下,首先把物體放在離轉(zhuǎn)軸近的地方,然后慢慢增加角速度,摩擦力肯定也是逐漸增加然后達(dá)到最大,接著物體滑動(dòng)使得繩子拉直,接下來的向心力就是拉力增加來提供了。
你的疑問,繩子張力為零的情況有很多,一個(gè)是未拉直時(shí),還有就是恰好拉直的臨界點(diǎn)。而轉(zhuǎn)臺(tái)角速度,按照我的想法是變化的。題目應(yīng)該是想讓你做出w,r,f的關(guān)系出來,分情況討論。
說的有點(diǎn)啰嗦了,應(yīng)該明白了吧
當(dāng)木箱突然停下來后,小球由于具有慣性,所以小球會(huì)下擺,做圓周運(yùn)動(dòng),則有
T-mg=(mv'^2)/L,可見當(dāng)v'^2取最大時(shí),T取最大
在小球下擺過程中,機(jī)械能守恒,所以當(dāng)小球擺到最低點(diǎn)時(shí),v'^2最大
對(duì)此過程用動(dòng)能定理:mgL(1-cosβ)=0.5mv'^2-0.5mv^2
的v'^2=2gL(1-cosβ)+v^2
所以T=mg+m{v^2+2gL(1-cosβ)}/L
畫圖打字都麻煩,我給說個(gè)思路和一個(gè)核心公式,,關(guān)鍵點(diǎn):你要求出這個(gè)斜面上的垂直斜面合力,和平行于斜面上的合力,,垂直合力為Qcosθ+Psinθ,,平行斜面合力(Pcosθ-Qsinθ),,,兩個(gè)合力求出來時(shí),當(dāng)垂直合力乘以tan10大于 平行合力時(shí),這時(shí)候是靜摩擦,不移動(dòng),,當(dāng)垂直合力乘以tan10小于 平行合力時(shí)這時(shí)候是動(dòng)摩擦,會(huì)移動(dòng),移動(dòng)方向取決于平行合力的方向,,所以你不但要求出平行合力大于 垂直合力乘以tan10的臨界條件,而且要根據(jù)平行合力方向判斷是否是向下,因?yàn)镼大到一定程度也會(huì)把木頭向上頂。
提高一個(gè)深度理解,摩擦力是就是垂直方向合力乘以tan10,這個(gè)值的意義沒有方向,只看這個(gè)值得絕對(duì)值是否大于平行合力絕對(duì)值,大于就是不動(dòng)維持平衡,小于就是移動(dòng)。。移動(dòng)分兩種,一種是平行合力非常大,正值,,這是朝向?yàn)橄?,,一種是平行合力非常大,負(fù)值,,朝向?yàn)樯弦苿?dòng)。。。這個(gè)題的答案,肯定是根據(jù)10為臨界點(diǎn)劃分,把θ分區(qū)間考慮是否是上述三種情況,一個(gè)是0到10度,一個(gè)是10度到170度,1個(gè)是170度到180,三區(qū)間考慮。
這是1問和3問的思路即考慮摩擦,不考慮摩擦的話那很簡(jiǎn)單就是Qcosθcosθ>P,滿足此公式即可這樣可求p的下限值。

1、假設(shè)力F與水平方向的夾角為θ,將F分解成水平方向的分力Fx=Fcosθ和豎直方向的分力Fy=Fsinθ,其中Fy與重力支持力的合力為0,所以物體所受的合外力等于Fx,由牛頓第二定律可得a=Fx/m=(Fcosθ)/m,所以F增大,加速度a增大
2、首先對(duì)小球進(jìn)行受力分析,小球受重力mg與斜面的支持力N及繩子的拉力T,將重力mg與加速度a分別沿斜面方向與垂直斜面方向分解,在斜面方向與垂直斜面方向分別應(yīng)用牛頓第二定律可得
在斜面方向:T-mgsin30°=masin30°,由此可求得T=12N,由牛頓第三定律可得球?qū)K的拉力大小為12N
在垂直斜面方向:N-mgcos30°=macos30°,由此可求得N=12(√3)N,由牛頓第三定律可得球?qū)π泵娴膲毫?2(√3)N
3、(1)將五個(gè)木塊看成一個(gè)整體,由牛頓第二定律可得:F-5μmg=5ma,由此可求得a=(F/5m)-μg
(2)對(duì)第四塊木塊應(yīng)用牛頓第二定律有,F(xiàn)合=ma=(F/5)-μmg
(3)假設(shè)第三木塊對(duì)第四塊木塊的作用力為N,將第四塊木塊與第五塊木塊看成一個(gè)整體,由第二定律可得N-2μmg=2ma,由此得N=2m(a+μg),將a代入得:N=2F/5

A、當(dāng)轉(zhuǎn)臺(tái)角速度還不為W時(shí),
此時(shí)的物塊的向心力不等于零,而是等于物塊和轉(zhuǎn)盤間的摩擦力F,因?yàn)轭}上說 ”連接物塊和轉(zhuǎn)軸的繩子剛好 被拉直(繩子的張力為零)“,所以這個(gè)摩擦力F就是最大靜摩擦力F最。就是說物體受到摩擦力達(dá)到極限了,繩子剛好拉直不受力,如果超過這個(gè)力就要使繩子受力了,就意味著超出最大靜摩擦力了。所以說此時(shí)的物塊和轉(zhuǎn)盤間的摩擦力F正好等于最大靜摩擦力 F最。這個(gè)摩擦力F=F最=mgu。
B、當(dāng)轉(zhuǎn)臺(tái)角速度為W時(shí),
1、我們假設(shè)此時(shí)物體的最大靜摩擦力 F最不足以提供向心力了,那么此時(shí)的細(xì)繩的拉力 f=F向 - F最 =mω2r -mgu
(F向就是向心力)
2、我們假設(shè)此時(shí)物體的的摩擦力F還在最大靜摩擦力 F最范圍內(nèi)的話,那么此時(shí)的摩擦力 F足以提供向心力。此時(shí)的細(xì)繩的拉力 f=0
這道題主要考察了你對(duì)摩擦力在臨界狀態(tài)時(shí)的分析和應(yīng)用,考查了你對(duì)圓周運(yùn)動(dòng)的理解,對(duì)向心力的理解,以及向心力和其他能提供向心力的力的應(yīng)用和分析??!
不會(huì)的,不懂得可以問我。
數(shù)理化團(tuán)隊(duì)竭誠(chéng)為您服務(wù)!
以上就是高中物理力學(xué)大題的全部?jī)?nèi)容,高中物理典型例題集錦(一)力學(xué)部分 1、如圖1-1所示,長(zhǎng)為5米的細(xì)繩的兩端分別系于豎立在地面上相距為4米的兩桿頂端A、B。繩上掛一個(gè)光滑的輕質(zhì)掛鉤。它鉤著一個(gè)重為12牛的物體。平衡時(shí),繩中張力T=___分析與解:本題為三力平衡問題。其基本思路為:選對(duì)象、分析力、畫力圖、列方程。內(nèi)容來源于互聯(lián)網(wǎng),信息真?zhèn)涡枳孕斜鎰e。如有侵權(quán)請(qǐng)聯(lián)系刪除。